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Introduction

)

NEED TO UNDERSTAND MODEL'S WHY WE NEED TO MOVE BEYOND WHY WE NEED CAUSAL
DECISION MAKING ACCURACY EXPLANATIONS AND HOW TO GET
THEM
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In this direction, our goal is to Specifically, | will discuss how we allows us to evaluate a model’s
evaluate the performance of models apply counterfactual data mutations reliability and trustworthiness.
in relation to human intuition. to get causal explanations
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Interpretability Overview

 Real World Problems

* Criminal risk assessment tool, shows racial biases
* European Union’s “Right to Explanation”

* Software Engineering Problems
* Explaining Predictions of Code Tasks
* Semantic Code Clone Detection Task

Model Reported F1-Score Observed F1-Score
CodeBERT 94.0% 71.11%]
CodeGraph44CCDetector 96.6% 53.76%|

CodeT5 97.2% 65.9% |
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Interpretability Overview

* Interpretability
* the degree to which a human can understand the cause of a decision
* Interpretability also defined as a part of explainability.

* Explainable models

e summarize the reasons for neural network behaviors
e gain the trust of the users
* generate insights into the causes of their decisions.

* “You were denied a loan because your annual income was £30,000. If your income had
been £45,000, you would have been offered a loan.”
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Ladder of Causality: 3 levels of interpretability

JUDEA PEARL
AND DANA MACKENZIE

THE

BOOK OF
WHY
a <G e

THE NEW SCIENCE
OF CAUSE AND EFFECT
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Interventions: (Doing)
r How can | make [...] happen?

aims to answer
Ilwhy”
guestions.

(
Counterfactuals: (Imagining)
What would happen under
r different circumstances?
.
—
“What if” questions.
4

Associations: (Seeing)

How are variables related?

“How would seeing x change my belief

iny?”

Interpreting the Gap Between Al and Human Intuition in Code
Clone Detection
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Causal Interpretability

e Causal interpretability

* helps us understand the made by machine learning
algorithms, improve their performance, and prevent them from failing in
unexpected circumstances
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Causal Interpretability for Clone Detection
Models

 Was it feature X that caused decision Y ?

* “Did the code similarities cause the model to predict the clone as a true
clone?”

 What would have happened to this decision of a classifier had we had
a different input to it?

* “If we removed the code similarities from a clone pair, would the system still
make the same decision?”
* “Why did the classifier make this decision instead of another?”

 Why do we get a false prediction for a clone pair? What’s causing the false
prediction?

Interpreting the Gap Between Al and Human Intuition in Code
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Research Goals

* How do we know the real causes of predictions?
* Are true clone predictions caused by code similarities?
* Are false clone predictions caused by differences?
* Are mispredictions caused by distracting similarities or differences?

* How can we decide the best model for clone detection
* Which is well aligned with human intuition
 Which is robust, reliable and trustworthy

* How can we measure these attributes?
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How to do Causal Inference

1.Causal Diagrams: DAGs used to depict causal relationships between variables,
helping to visualize the direction of causality and potential confounding
factors.

[none|core|noncore]

[true|false]

Differences

[none|core|noncore]
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How to do Causal Inference

2. Counterfactuals: Causal inference often involves comparing observed
outcomes with hypothetical outcomes that would have occurred under
different conditions or interventions. These hypothetical outcomes are known
as counterfactuals.

Observed Intervention | Hypothetical | Hypothetical == Actual | Counterfactual Explanation
Outcome Outcome Outcome?

True clone  Remove False clone v Similarities are causing the
similarities model’s original prediction

X The model’s original
prediction is influenced by

confounding factors

Interpreting the Gap Between Al and Human Intuition in Code
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How to do Causal Inference

3. Measure Causal Effects: Causal inference quantifies the effect of one
variable (the cause or treatment) on another variable (the effect or outcome).

Average Causal Effect Metrics
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Causal Interpretation of Code Clone Detection

e Causal framework to interpret a model’s clone predictions
* Are similarities the real cause of clone prediction?
* Counterfactual explanations help establish causes
* Using human labels to create counterfactual clone pairs
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VisualStudio Annotator Tool for Clone and
Code Labeling

J Clone13 java

1 public class Clonel3d {

2 /*

3 * Semantic clone benchmark

4 * Source code are extracted from Stack Overflow

5 * Stack overflow Question #:453813

6 * Stack Overflow answer #:1647815

7 * And Stack Overflow answer#:39232425

8 */

9 public int countlines (String filename) throws IOException {
1@ LineNumberReader reader = new LinelumberReader (new FileReader (filename));
11 int cnt = @;

12 String lineRead = "";

13 while ((lineRead = reader.readline ()) != null) {

14 i

15 cnt = reader.getlineNumber ();

16 reader.close ();

17 return cnt;

18 k

19

28 public static int countlines (File input) throws I0Exception {
21 try (InputStream is = new FileInputStream (input)) {

22 int count = 1;

23 for (int aChar = 8;

24 aChar != - 1; aChar = is.read ()) count += aChar == "\n' 2 1 : @;
25 return count;

26 }

27 T

28
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Label Resolution

* Clone labels
e Two human annotators and another that breaks ties

 Code labels
e TWO human annotation sets

» Assign a label value (-2,-1,+1,+2) based on core differences, non-core
differences, noncore similarities, and core similarities

* Calculate average label values for overlapping label segments
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Mutation Strategy

* Syntax-preserving mutations

* Mutation scope
 Removing only core similarities or differences
 Removing all core and noncore similarities or differences

* Mutate using AST parser
 Remove a set of statements
* Remove single statements
 Remove parts of a statement



Evaluation
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Evaluation Metrics

* Average Causal Effect (ACE) of removing similarities
and differences

(é@ * Human-model code similarity intuition alignment

@ * Confounding Frequency

'[@] * Prediction Consistency




SMU Classification: Restricted

Evaluation Metrics

* Average Causal Effect (ACE) of removing similarities and
differences

« Measures the average of the model’s prediction shifts on mutated
clone pairs
ACE of similarities in TP and FP

ACE of differences in TN and FN

A positive causal effect value > 0 means the model aligns with human
Intuition

A 0 or negative causal effect <O means the model does not align with
human intuition
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Sensitivity of models’ prediction scores to
similarities removal
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Sensitivity of various models’ prediction
scores to differences removal
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Model Ranks

ACE of sim ACE of diff ACE of sim ACE of diff Aggregate

TP cases TN cases FP cases FN cases ACE

salesforce @ salesforce @
salesforce salesforce

=
.= CodeBERT CodeT5 @GPT—Turbo-B.S << CodeGraph4CCDetector
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Evaluation Metrics

Sle * Human-model code similarity intuition alignment metric
~ * Case H=1, M=1.

* Is model’s true clone prediction for a true clone pair based on human-
identified code similarities?

* Human-model alignment percentage = average no. of prediction flips caused
by similarities removal x 100

CodeBERT CodeGraph4CCDetector GPT-Turbo-3.5 CodeT5
4.44% 53.6% 89.03% 49.13%
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Evaluation Metrics

@ * Confounding Frequency Metric

 Measures the number of times a model’s on
mutated clone pairs (for FP and FN cases)
* For TP cases, if the by removing similarities, we

count it as the model being confounded.

* Confounding frequency = (no. of times flipped on FP + no. of time
flipped on FN + no. of times didn’t flio on TP) / (| FP+FN+TP/)

* Model with lower confounding frequency is better

Mutation Scope CodeBERT CodeGraph4CCDetector GPT-Turbo-3.5 CodeT5
Core 0.77 0.2 0.09 0.45
All 0.73 0.2 0.1 0.28
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Evaluation Metrics

[@ * Prediction Consistency
S/

* A model’s predictions across two runs on the same data should be
the same

* We calculate the Jaccard similarity between the predictions for a
model on the same set of clone pairs

CodeBERT CodeGraph4CCDetector GPT-Turbo-3.5 CodeT5
1 1 0.75 1
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Model Ranks
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Model Ranks for Semantic Code Clone
Detection

Models Gold stars
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Future work

@
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Using automated techniques to
generate the counterfactual samples

Using SOTA model intuitions

* First verify SHAP-based explanations of a SOTA model using
human evaluation

e Perform SHAP-based mutations to get counterfactuals

¢ Evaluate other models on mutated counterfactual samples

Using our labeled data to finetune ML models using contrastive learning

Interpreting the Gap Between Al and Human Intuition in Code

Clone Detection
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Thanks!

 Questions and feedback and comments welcome!

* shamsaabid@smu.edu.sg
* https://shamsa-abid.github.io/

Interpreting the Gap Between Al and Human Intuition in Code
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